If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2+23v+14=0
a = 3; b = 23; c = +14;
Δ = b2-4ac
Δ = 232-4·3·14
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-19}{2*3}=\frac{-42}{6} =-7 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+19}{2*3}=\frac{-4}{6} =-2/3 $
| y+2/4-y-3/6=5/12y | | 11+26x+5-7x=5x-4 | | x={0,2} | | -6+30z=66 | | 6p/8+24=42 | | 218=-w+275 | | 4x+1=16x-8x-1 | | 289-u=105 | | A/b=3/2 | | E^(8y)=8 | | 243=193-v | | 225=-x+115 | | 3x+2=8-3 | | 2x^2-5x-3600=0 | | 2x-5x-17=25 | | 6(y-2=36 | | Xx3+4=18 | | 5p/6+9=19 | | 25/8=1/3b+3/2-5/2b | | 4/x=20/45 | | 6p-5p=2 | | 12(z-3.20)=54 | | -4p+9p+6=15 | | -7p+8p-15=-10 | | (3x-5)x2=5x+5 | | 4p-3p+8=2 | | 9p-8p-6=-10 | | w+57=68 | | 3p2p+2=10 | | 16x-76=32 | | -88=-50-x | | 10x-12÷5x-3=0 |